Relations & Functions (8 marks)

  1. Show f(x)=x² is not one-one.
  2. Find domain/range of f(x)=√(x-2)+1.
  3. Prove equivalence relation on N: a~b if divides.
  4. Inverse of f(x)=(x-1)/(x+1), x≠-1.
  5. Binary operation: closure for + mod 5.

Inverse Trigonometric Functions (5 marks)

  1. Evaluate tan⁻¹(1)+cos⁻¹(1/2).
  2. sin⁻¹((2x+1)/(2x²+1)) principal value.
  3. Prove tan⁻¹a + tan⁻¹b = tan⁻¹((a+b)/(1-ab)).
  4. Range of principal value branch.
  5. Simplify cos(tan⁻¹(3/4)).

Matrices (10 marks, Algebra)

  1. Product AB where A=diag(1,2,3), B=[,].
  2. Adjoint of [,[-1,3,0],].
  3. Solve system: 2x+y=7, x+2y=5 using matrix inverse.
  4. Determinant |A| if A transpose = 2A ​.
  5. Eigenvalues of [,].​

Determinants (Algebra)

  1. Area triangle vertices (1,0),(6,0),(0,3) using det.
  2. Minor/cofactor expansion 3×3.
  3. det(A+B)=detA+detB? True/false justify.
  4. Solve 3x-4y+z=5 etc. Cramer’s rule.
  5. Property: det(kA)=kⁿ detA.

Continuity & Differentiability (8 marks)

  1. Check continuity f(x)=|x|/x at x=0 ​.
  2. Differentiate sin(x²) chain rule.
  3. Rolle’s theorem verify x²-5x+6 on.​
  4. dy/dx: xy=log(xy) implicit.
  5. Second derivative test extrema.

Applications of Derivatives (16 marks, Calculus)

  1. Rate: ladder slips 0.5m/s base 2m/s find length.
  2. Tangent normal to y=√(25-x²) at (3,4).
  3. Max area rectangle in semicircle.
  4. Increasing/decreasing f(x)=x³-3x+2.
  5. Approximation √36.1 using differentials.

Integrals (16 marks, Calculus)

  1. ∫(x+1)/(x+2) dx partial fractions.
  2. ∫sin²x dx trig identity.
  3. Area bounded y=sinx, x-axis [0,π].
  4. ∫dx/√(1-x²) standard form.
  5. Definite ∫₀¹ x e^x dx integration by parts.

Differential Equations (8 marks)

  1. Solve dy/dx + y tanx = sin²x.
  2. Order/degree: (d²y/dx²) + (dy/dx)³ = x.
  3. Orthogonal trajectories xy=ce^x.
  4. Variable separable: dy/y = dx/x.
  5. Homogeneous: (x-y)dy=(x+ y)dx.

Vector Algebra & 3D Geometry (14 marks)

  1. Scalar triple product [a b c]=6, find volume.
  2. Equation line through (1,0,1) parallel i+2j-k.
  3. Distance point (1,2,3) to plane x+2y+z=7.
  4. Angle between vectors a·b=3, |a|=√10, |b|=1 ​.
  5. Shortest distance skew lines.

Application of Integrals, Probability (Remaining)

  1. Area between y=x², y=√x.
  2. Bayes theorem P(A|B)=? Given priors ​.
  3. Binomial P(X=5) n=10,p=0.4.
  4. Variance discrete RV.
  5. Random variable expectation.

These are the most important ques for class 12th boards exam 2025-2026 for cbsc boards and state boards as well .

Categorized in:

12th Class, Boards, Uncategorized,

Last Update: 05/12/2025